ABSTRACT OF QUOTATION
SOLICITATION Number RSU-07-18
TOTAL ABC: PhP51,043,000.00
TOTAL QTY: 72

PROCUREMENT OF TECHNICAL AND SCIENTIFIC EQUIPMENT

LOT-1:
CNC Milling with Inter Changeable Programmer \& CNC Turning Lathe with Inter Changeable Programmer (ABC: PhP8,500,000.00, QTY: 2)
LOT-2: Refrigeration \& Air conditioning Trainer (ABC: PhP3,500,000.00, QTY: 1)
LOT-3: Feed milling Equipment (ABC: PhP1,252,000.00, QTY: 1)
LOT-4: Boiler \& Steam Jacket Kettle (ABC: PhP4,500,000.00, QTY: 3)
LOT-5: Backhoe Excavator, Dump Truck \& Portable Concrete Mixer (ABC: PhP6,580,000.00, QTY: 4)
LOT-6: Smart Grid (ABC: PhP10,000,000.00, QTY: 1)
LOT-7: Electric Machines (ABC: PhP1,500,000.00, QTY: 1)
LOT-8: Linear Circuit Lab (1), Linear Circuit Lab (2), and Electrical \& Electronic Circuit Lab (ABC: PhP2,750,000.00, QTY: 3)
LOT-9: Digital Logic Lab (ABC: PhP800,000.00, QTY: 1)
LOT-10: Arduino Trainer (ABC: PhP1,000,000.00, QTY: 1)
LOT-11: Raspberry Pi Trainer (ABC: PhP1,000,000.00, QTY: 5)
LOT-12: Hydraulic Press (ABC: PhP1,500,000.00, QTY: 1)
LOT-13: Sieve Shaker Machine \& I. S. Sieve Set (ABC: PhP350,000.00, QTY: 3)
LOT-14: Electronic Theodolite (ABC: PhP225,000.00, QTY: 3)
LOT-15: Handheld GPS (ABC: PhP270,000.00, QTY: 6)
LOT-16: Hydrostatic Bench With Slotted Weight And Tank (ABC: PhP3,955,000.00, QTY: 1)
LOT-17: Personal Computer with Accessories \& A3 Printer with Print Materials (ABC: PhP483,000.00, QTY: 13)
LOT-18: Structural Engineering Learning Center with Multimedia (ABC: PhP1,800,000.00, QTY: 1)
LOT-19: LED TV \& Digital Camera (ABC: PhP1,078,000.00, QTY: 21)

LOT-1: CNC MILLING WITH INTER CHANGEABLE PROGRAMMER \& CNC TURNING LATHE WITH INTER CHANGEABLE PROGRAMMER (ABC: PhP51,123,000.00, QTY: 2)

UNIT	ITEM DESCRIPTION	QTY	ESTIMATED UNIT COST	ESTIMATED COST
unit	CNC milling w/ interchangeable programmer, Work area: travel $\mathrm{x} / \mathrm{y} / \mathrm{z}(2000 / 800 / 750 \mathrm{~mm})$; dist. spindle nose: $0 / 750 \mathrm{~mm}$; no. of axes: 3; motion speed: $50 / 50 / 50 \mathrm{~m} / \mathrm{min}$; clamping area: $2400 \times 750 \mathrm{~mm}$; max. Table load: 2200 kg ; tool change: no. of tool station: 30; max. Tool dia.: 75(125mm) milling spindle: max. Speed: 15000rpm; max. torque: $125 \mathrm{n}-\mathrm{m}$;	1		
unit	CNC turning lathe $\mathbf{w} /$ inter changeable programmer, Work area: travel $\mathrm{x} / \mathrm{y} / \mathrm{z}$ (160/+40/-30/510mm); bar dia.: 45(51mm); Max. Turning dia.: 300 mm ; swing over bed: 430 mm ; rapid motion speed in $\mathrm{x} / \mathrm{y} / \mathrm{z}:(30 \mathrm{~m} / \mathrm{min} / 15 \mathrm{~m} / \mathrm{min} / 45 \mathrm{~m} / \mathrm{min})$; max. Speed: 7000 rpm max. Power: 15 kw ; max. Torque: $100 \mathrm{n}-\mathrm{m}$ counter spindle: max. Speed: 7000rpm; max. Power: 15kw; max. Torque: 100n-m; tailstock: VDI size: 25; no. of tools: 12; driven tools: 12; max. Speed: 6000rpm; max. Power: 4kw; max. torque: $16 \mathrm{n}-\mathrm{m}$	1		
TOTAL	QTY	2	ESTIMATED COST	

LOT-2: REFRIGERATION \& AIR CONDITIONING TRAINER (ABC: PhP3,500,000.00, QTY: 1)

UNIT	ITEM DESCRIPTION	QTY	ESTIMATED UNIT COST	ESTIMATED COST
unit	REFRIGERATION \& AIRCONDITIONING TRAINER, Power input: AC220V; $\pm 10 \% ~(50 H Z) ~ B e n c h ~ s t r u c t u r e: ~ A l u m i n u m ~ i r o n ~ R e f r i g e r a n t: ~$			
Air conditioning (R22); Refrigeration (R134a) Instrument: digital voltmeter and ammeter Safety: short circuit; overload and leakage protection.	1			
TOTAL	QTY	1	ESTIMATED COST	

LOT-3: FEED MILLING EQUIPMENT (ABC: PhP1,252,000.00, QTY: 1)

UNIT	ITEM DESCRIPTION	QTY	ESTIMATED UNIT COST	ESTIMATED COST
unit	Feed milling equipment, with: 5-tonner hammer mill, diesel engine driven, 18-30hp, fine sieve; flatbed dryer, 50 cavans capacity, rice hull furnace, motorized fan; ribbon mixer, 10 bagger, with conveyor and bagger; bag stitcher; weighing scale, 250 kg capacity.	1		
TOTAL	QTY	1	ESTIMATED COST	

LOT-4: BOILER \& STEAM JACKET KETTLE (ABC: PhP4,500,000.00, QTY: 3)

UNIT	ITEM DESCRIPTION	QTY	ESTIMATED UNIT COST	ESTIMATED COST
unit	Boiler, 10 boiler horsepower, diesel fuel burner, vertical fire tubes, complete with safety controls, 4-header, with insulation,	1		
unit	Steam jacketed kettle, stainless steel food grade, $1 / 1$ "thick, with detachable mechanical stirrer, insulated steam lines from header, with drain.	2		
TOTAL	QTY	3	ESTIMATED COST	

LOT-5: BACKHOE EXCAVATOR, DUMP TRUCK \& PORTABLE CONCRETE MIXER (ABC: PhP6,580,000.00, QTY: 4)

UNIT	ITEM DESCRIPTION	QTY	ESTIMATED UNIT COST	ESTIMATED COST
unit	Backhoe Excavator with air conditioned cab and concrete breaker attachment, CDM 6150 - Original Cummins Engine 4BT, Komatsu counterpart PC150, Chain type, 0.56 cu m. bucket capacity.	1		
unit	Dump Truck with air conditioned cab, ETX Auman 12 wheeler, 25cu.m. WP12.380E32, $11596 \mathrm{cc}, 380 \mathrm{HP}$	1		
unit	Portable Concrete Mixer, 1 bagger mixer, with diesel or gasoline engine, 18HP, with wheels	2		
TOTAL	QTY	4	ESTIMATED COST	

LOT-6: SMART GRID (ABC: PhP10,000,000.00, QTY: 1)

UNIT	ITEM DESCRIPTION	QTY	ESTIMATED UNIT COST	$\begin{aligned} & \text { ESTIMATED } \\ & \text { COST } \end{aligned}$
unit	SMART GRID: THREE-PHASE SUPPLY UNIT. This power supply unit must be suitable three-phase connection with 4-pole cam mains switch. 25 A current operated earth leakage circuit breaker, sensitivity 30 mA . Three-phase indicator lamps. Output through 5 safety terminals: L1, L2, L3, N and PE. Switch for simulation of wind or photovoltaic energy power source. Modbus RS485 Protocol Communication. This module must have insulated type front panel with the electrical scheme; it must include also safety terminals. THREE-PHASE TRANSFORMER-didactic equipment 3 pcs. Three-phase transformer for feeding a transmission line model 380 kV with scale factor 1:1000. Primary - $3 \times 380 \mathrm{~V}$ windings with tap at 220 V - Star or delta connection Secondary - $3 \times 220 \mathrm{~V}$ windings with taps at $+5 \%,-5 \%,-10 \%,-15 \%$ - Star connection for $3 \times 380 \mathrm{~V}$ - Various star connections possible - Rated power: 800 VA FEEDER MANAGER RELAY-didactic equipment. Three-phase Current, Voltage and Earth Fault multifunction relay for protection and management of MV/HV distribution lines. Real time measurements of the primary value of the input quantities are continuously available from relay's display and from the serial communication port. Relay's programming and setting must be made directly by the front face keyboard or via the serial communication ports. Setting, event recording and oscillography must be stored into non-volatile memory (E2prom). The relay must be fitted with a multi-voltage, auto ranging power supply unit self- protected and transformer isolated. - Three levels for phase overcurrent independently programmable as directional or non-directional. - Three levels for Earth Fault independently programmable as directional or nondirectional. - Selectable Time current curves according to IEC and IEEE standards. - Two over/under voltage levels. - Two over/under frequency levels. - Zero sequence overvoltage level. - Two Negative Sequence current levels. - One Positive Sequence overvoltage level. - One Negative Sequence under-voltage level. - Two Reactive Power (VAR) control levels (optional). - Trip circuit supervision. - Associated Circuit Breaker control (OPEN / CLOSE) - Breaker failure protection. - RS232 serial communication port on Front Face - RS485. - Output relays totally user programmable. - Digital inputs user programmable. LINE MODEL-didactic equipment. Three-phase model of an overhead power transmission line 360 km long, voltage 380 kV and current $1000 \mathrm{~A} \bullet$ Scale factor: 1:1000 Line resistance: 13Ω, line inductance: 290 mH , mutual capacitance: $1 \mu \mathrm{~F}$, earth capacitance: $2 \mu \mathrm{~F}$ earth resistance: 11Ω, earth inductance: 250 mH . LINE MODEL-didactic equipment. Three-phase model of an overhead power transmission line 100 km long, voltage 380 kV and current $1000 \mathrm{~A} \bullet$ Scale factor: 1:1000. MAXIMUM DEMAND METER-didactic equipment 3 pcs . The module must consist of a microprocessor controlled three-phase power analyzer. It must have insulated front panel and it must be suitable for the measurement of voltages,	1		

currents, frequencies, active power, reactive power, apparent power. Input voltage: 450 V (max 800 Vrms). Input current: 5 A (max 20 Arms). Operating frequency: $47 \div 63 \mathrm{~Hz}$. Auxiliary supply: single-phase from mains on the front panel, it must include a RS485 port, on/off switch and LCD display with the following features: energy count: 8 digit counter reading updates: 1, 1 seconds. The module must be supplied with manual in English language.
POWER CIRCUIT BREAKER-didactic equipment 3 pcs. Three-phase power circuit breaker with normally closed auxiliary contact.

- Contact load capability: 400 Vac, 3 A
- Supply voltage: single-phase from mains.

The item must include two light push buttons (one red and one green) and must have insulated front panel. The unit must be supplied with a manual in English language.
GENERATOR SYNCHRONISING RELAY-didactic equipment. It must consist in a numerical synchronizing relay which measures voltage and frequency of two inputs; The voltage, frequency and phase angle of the Generator input (G) must be individually compared with those of the Bus input (B) considered as reference. Functions:

- Automatic Synchronization and Synchro-check.
- Fast proportional Voltage and Frequency regulation.
- Phase displacement checking with circuit breaker closing time control.
- Anti-motoring
- Kicker pulse
- Event Recording.
- Modbus Communication Protocol. Synchronizing of the generator with the reference bus
- Normal/Dead Bus operation modes Adjustable Operate time delay.
- Adjustable Max Voltage difference Anti-motoring control
- Automatic Adjusting of phase angle for circuit breaker close.
- Adjustable Max Frequency difference.
- Adjustable Max Phase displacement.
- Adjustable Increase/Decrease pulses to speed regulator.
- Adjustable Increase/Decrease pulses to voltage regulator.
- Adjustable Min/Max Bus voltage for synchronizing operation.
- Adjustable Min/Max Bus frequency for synchronizing operation
- Kicker pulse control on steady phase displacement
- Fast synchronization with control pulses proportional to speed and voltage difference 3 Digital Inputs optically isolated 2 kV .
MOTOR-DRIVEN POWER SUPPLY UNIT-didactic equipment. Housed in metallic box with PVC label. Suitable for power supplying with variable voltage the braking systems and the excitation of the machines through manual or automatic operation. According to the IEC standards, must be arranged on the front panel, clearly interconnected through a schematic diagram.
Technical features:
Automatic power supply unit with the following features:
- Continuously adjustable output voltage: 0 to 210 V - fixed output current: max

2A • magneto-thermal protection • analog signal INPUT terminal and connectors: 0 to 10 V The module must be equipped with: Pilot lamp Potentiometer for variable regulation. Control system selection switch (auto - manual). Magnetothermal protection of variator, Terminals for system connection, Ground terminal, Output terminals, Power supply: $220 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$. The unit must be supplied with a manual in English language
ELECTRICAL POWER DIGITAL MEASURING UNIT-didactic equipment 2 pcs. It must be suitable for the measurement in direct current of: voltage, current, power and energy. Measurement in alternate current of: voltage, current, power, active energy, reactive energy, apparent energy, cosphi and frequency. Main technical features: DC voltage: 300 Vdc - DC current: 20 Adc - AC voltage: 450 Vac AC current: 20 Aac - Power: 9000 W Power supply: single-phase, $90-260 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ Communication: RS485 with MODBUS RTU protocol. The unit must be supplied with a manual in English language. BRUSHLESS MOTOR WITH CONTROLLERdidactic equipment 2 pcs. Module for the study of automatic control for a brushless motor. - Control and operation of a brushless motor in voltage. The system must allow the study of the operation of a brushless motor of typical

industrial process automation. The student must have the opportunity to learn to control and parameterize an automatic operation. The control and monitoring system must be e done through software that will be able to: - Set system parameters • Draw graphic curves • Monitor real-time system (torque, speed) Specifications: 1kW power brushless motor with electronic encoder. Mechanical braking system for the analysis of the couple. Encoder outputs for the analysis of speed. Display system for controlling and monitoring events. Button start and stop action and automatic stop intervention in case of alarm. Complete software for PC interfaced to the system via RS485. THREE-PHASE SYNCHRONOUS MACHINE-didactic equipment machine with smooth inductor and three-phase stator armature winding for operation either as an alternator or as a synchronous motor. Technical features: Power: 1 kWA-Voltage: 220/380 V D/Y Current: 2.6/1.5 A D/Y-Speed: 1500 rpm-Excitation winding on the rotor. It must be possible to couple the electrical machine with other electrical machines through a hub and spider elastic gear ring in polyurethane. It must be supplied with a hooked module in aluminum with PVC label and safety terminals for the electrical connection. A schematic diagram must be shown on the hooked module. Each machine must be mounted on a base and must be provided with:

- Plate that brings its axis height to the standard measure (112 mm).
- Plates for fixing to the base of the machine
- Four screws for fixing of the machine Inter Rail Distance of the plates: 160 mm Coupling Joint: Diameter: 40 mm , length 40 mm . The motor must be supplied with manual in English language.
RESISTIVE LOAD-didactic equipment. It must consist of a single or three-phase resistive step-variable load.
MECHANICAL FEATURES: metallic box: on the front panel all the controls, the protections, the output terminals and a schematic diagram on PVC label must be shown.
ELECTRICAL FEATURES
The load must be composed by three resistances, with possibility of star, delta and parallel connection, controlled by a three switches. As a function of the switch positions, there must be the following phase values: Position Resistance Max power per phase
11050 Ohm 46 W
2750 Ohm 65 W
3435 Ohm 110 W
4300 Ohm 160 W
5213 Ohm 230 W
6150 Ohm 330 W
7123 Ohm 400 W
Maximum power in single or three phase connection is 1200 W . Rated voltage in star connection 380 V , in D connection is 220 V , in single-phase 220 V . The unit must be supplied with a manual in English language.
INDUCTIVE LOAD-didactic equipment. It must consist of a single or three-phase inductive step-variable load. Housed in a metallic box.
MECHANICAL FEATURES: metallic box: on the front panel all the controls, the protections, the output terminals and a schematic diagram on PVC label must be shown.
ELECTRICAL FEATURES
The load must be composed by three inductances, with possibility of star, delta and parallel connection, controlled by a three switches. As a function of the switch positions, there must be the following phase values: Position Inductance Max. Power per phase
14.46 H 34 VAr
23.19 H 48 VAr
31.84 H 83 VAr

4 1.27 H 121 VAr
50.90 H 171 VAr
60.64 H 242 Var
70.52 H 297 VAr

Max reactive power 890 VAr in three-phase or single-phase connection. Rated voltage in star connection 380 V , in D connection is 220 V , in single-phase 220 V . The unit must be supplied with a manual in English language.

[^0]CIRCUIT BREAKER-didactic equipment • Current Max.: 10A

- Intervention threshold differential: 30 mA . It shall correspond to a protective module that contains one input, one output and a 2-pole residual current device. It shall have insulated front panel that will include residual current device, AC input terminals and AC output terminals.
INVERTER GRID-didactic equipment Grid tie power inverter that must ensure that the power supplied will be in phase with the grid power. The module shall have 12 V solar panel input, ground terminal and AC terminals; in this module power inverter must be programmed to supply load from PV source and surplus energy will be sent to the mains grid. The module must have insulated front panel and include the following elements:

1) island protection indicator
2) output power indicators
3) PV panel input terminals
4) PE terminal
5) mains terminals

- Current Max.: 30A
- Voltage: 12V
- Power: 360W

PHOTOVOLTAIC INCLINABLE MODULE-didactic equipment 85W, 12V, complete

LOT-7: ELECTRIC MACHINES (ABC: PhP1,500,000.00, QTY: 1)

UNIT	ITEM DESCRIPTION	QTY	ESTIMATED UNIT COST	ESTIMATED COST		
	ELECTRIC MACHINES - OPENLAB - O.2 Kw Dissectible Electrical Machine Manual Configurations. Fully dissectible experimental rotating machines system ,Ac/dc power supply, Loads and Rheostat Module ,Electrical Power Measurement Module, Electrical and Speed Measurement, Multi-meter with virtual instrumentation, Parallel					
unit Board, Star/Delta Starter, Starting and Synchronization, Fault Simulators, Pole Changing Unit, Electromagnetic Brake, Adapter Bracket, Locking and Rotating Device, Motor Driven AC/DC Power Supply. Mechanical Power Measurement Module, Load Cell 100 N Motor Driven Resistive Load Unit Motor Driven Power Supply for Brake Computerized Data Acquisition System Via USB Data Acquisition and Processing Software for Electric Machines.	1					
TOTAL						

LOT-8: LINEAR CIRCUIT LAB (1), LINEAR CIRCUIT LAB (2), AND ELECTRICAL \& ELECTRONIC CIRCUIT LAB (ABC: PhP2,750,000.00, QTY: 3)

UNIT	ITEM DESCRIPTION	QTY	ESTIMATED UNIT COST	ESTIMATED COST
unit	LINEAR CIRCUIT LAB (1) - Electric Circuits Lab Includes: TINA Design Suite Educational Edition 1. DC Power Supply (1) Fixed DC power supply a. Voltage range : $\pm 5 \mathrm{~V}, \pm 12 \mathrm{~V}$ b. With output overload protection (2) Dual DC power supply a. Voltage range : $\pm 3 \mathrm{~V} \sim \pm 18 \mathrm{~V}$, continuously adjustable b. With output overload protection 2. AC Power Supply (1) Voltage range : $9 \mathrm{~V}^{\sim} \sim \mathrm{V}^{\sim} 9 \mathrm{~V}$ (2) With output overload protection 3. Function Generator (1) Output waveform : Sine, square and triangle (2) Output frequency: $10 \mathrm{~Hz} \sim 100 \mathrm{KHz}, 4$ settings, continuously adjustable (3) Accuracy : $\pm 5 \%$ of full scale value (4) Output impedance: 50 (5) Output voltage : $\geq 18 \mathrm{Vp}$-p (open loop) $\geq 9 \mathrm{Vp}$-p (with 50Ω load) 4. 3 1/2-Digit Digital Voltmeter / Ammeter (1) DC voltage range : $2 \mathrm{~V}, 200 \mathrm{~V}$ (2) DC voltage accuracy : $\pm 0.3 \%$ of reading +1 digit (3) DC current range: $200 \mu \mathrm{~A}, 2000 \mathrm{~mA}$ (4) DC current accuracy : $\pm 0.5 \%$ of reading +1 digit 5. Analog Meters (1) AC current : $0 \sim 100 \mathrm{~mA} \sim 1 \mathrm{~A}$ (2) AC voltage : $0 \sim 15 \mathrm{~V}$ (3) DC current : $0 \sim 100 \mathrm{~mA} \sim 1 \mathrm{~A}$ (4) DC voltage : $0 \sim 20 \mathrm{~V}$ 6. Speaker one $8 \Omega, 0.25 \mathrm{~W}$ speaker with driver circuit 7. Variable Resistors (1) $1 \mathrm{~K} \Omega, 0.25 \mathrm{~W}$ variable resistor with 3 terminals ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) (2) $10 \mathrm{~K} \Omega, 0.25 \mathrm{~W}$ variable resistor with 3 terminals ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) (3) $100 \mathrm{~K} \Omega, 0.25 \mathrm{~W}$ variable resistor with 3 terminals ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) (4) $1 \mathrm{M} \Omega, 0.25 \mathrm{~W}$ variable resistor with 3 terminals (A, B, C) 8. Breadboard (AC-90001) 1680 tie-point breadboard on top panel can be easily put into and taken off.	1		

LINEAR CIRCUIT LAB (2) - Electronic Circuits Lab Includes:
TINA Design Suite Educational Edition Main Unit (KL-21001)

1. DC Power Supply
(1) Fixed DC power supply
a. Voltage range : $\pm 5 \mathrm{~V}, \pm 12 \mathrm{~V}$
b. With output overload protection
(2) Dual DC power supply
a. Voltage range : $\pm 3 \mathrm{~V}^{\sim} \pm 18 \mathrm{~V}$, continuously adjustable
b. With output overload protection
2. AC power supply
(1) Voltage range : $9 \mathrm{~V} \sim 0 \mathrm{~V} \sim 9 \mathrm{~V}$
(2) With output overload protection
3. Function Generator
(1) Output waveform : Sine, square and triangle
(2) Output frequency : $10 \mathrm{~Hz} \sim 100 \mathrm{KHz}, 4$ settings, continuously adjustable
(3) Accuracy: $\pm 5 \%$ of full scale value
(4) Output impedance : 50Ω
(5) Output voltage: $\geq 18 \mathrm{Vp}-\mathrm{p}$ (open loop) $\geq 9 \mathrm{Vp}-\mathrm{p}$ (with 50Ω
load) 4. 3 1/2-Digit Digital Voltmeter/Ammeter
(1) DC voltage range : $2 \mathrm{~V}, 200 \mathrm{~V}$
(2) DC voltage accuracy : $\pm 0.3 \%$ of reading +1 digit
(3) DC current range : $200 \mu \mathrm{~A}, 2000 \mathrm{~mA}$
(4) DC current accuracy : $\pm 0.5 \%$ of reading +1 digit
4. Analog Meters
(1) AC current : $0 \sim 100 \mathrm{~mA} \sim 1 \mathrm{~A}$
(2) AC voltage : $0 \sim 15 \mathrm{~V}$
(3) DC current : $0 \sim 100 \mathrm{~mA} \sim 1 \mathrm{~A}$
(4) DC voltage : $0 \sim 20 \mathrm{~V}$
5. Speaker one $8 \Omega, 0.25 \mathrm{~W}$ speaker with driver circuit
6. Variable Resistors
(1) $1 \mathrm{~K} \Omega, 0.25 \mathrm{~W}$ variable resistor with 3 terminals (A, B, C)
(2) $10 \mathrm{~K} \Omega, 0.25 \mathrm{~W}$ variable resistor with 3 terminals ($\mathrm{A}, \mathrm{B}, \mathrm{C}$)
(3) $100 \mathrm{~K} \Omega, 0.25 \mathrm{~W}$ variable resistor with 3 terminals ($\mathrm{A}, \mathrm{B}, \mathrm{C}$)
(4) $1 \mathrm{M} \Omega, 0.25 \mathrm{~W}$ variable resistor with 3 terminals ($\mathrm{A}, \mathrm{B}, \mathrm{C}$)

unit	ELECTRICAL AND ELECTRONIC CIRCUIT LAB- Includes: TINA Design Suite Educational Edition Main Unit (KL-22001) 1. DC Power Supply (1) Fixed DC power supply a. Voltage: $5 \mathrm{~V}, 12 \mathrm{~V}$ b. With output overload protection (2) Dual DC power supply a. Voltage range : $3 \mathrm{~V} \sim 18 \mathrm{~V}$ continuously adjustable b. With output overload protection 2. AC Power Supply (1) Voltage range : $9 \mathrm{~V}^{\sim} 0 \mathrm{~V} \sim 9 \mathrm{~V}$ (2) With output overload protection 3. Signal Generator (1) Pulse generator: (TTL level) a. Frequency range : $1 \mathrm{~Hz} \sim 10 \mathrm{KHz} / 4$ settings, continuously adjustable b. Fan out : 10 TTL load (2) Pulse switches a. 2 independent output, TTL level b. With Q, Q output, pulse width $>5 \mathrm{~ms}$ c. Fan out: 10 TTL load (3) Data switches a. 8 set independent control output TTL level with DEBOUNCE circuit. b. Fan out : 10 TTL load 4. Function Generator (1) Output waveform : Sine triangle, square (2) Output frequency: $10 \sim 100 \mathrm{KHz} / 4$ settings, continuously adjustable (3) Output amplitude : $\geq 18 \mathrm{Vpp}$ (open circuit) $\geq 9 \mathrm{Vpp}$ (50Ω load) 5. Testing And Display (1) $31 / 2$ digital voltmeter /ammeter a. DC voltage range : 2 V 200 V b. DC voltage accuracy : (0.3% of reading+1digit) c. DC current range : $200 \mu \mathrm{~A} 2000 \mathrm{~mA}$ d. DC current accuracy : (0.5% of reading +1 digit) (2) Galvanometer a. Current range : 50 mA b. Accuracy Class 2.5 (3) LED indicator a. 10 sets independent LED indicates high, low logic state b. Input impedance $: \geq 100 \mathrm{~K} \Omega$ (4) Digital display a. 2 sets independent 7 -segment LED b. With BCD-7segment decoder/driver and DP Input c. Input with 8-4-2-1 code 6. Breadboard (AC-90001) 1680 tie-point breadboard on top panel can be easily put into and taken off	1		
TOTAL	QTY	3	ESTIMATED COST	

LOT-9: DIGITAL LOGIC LAB (ABC: PhP800,000.00, QTY: 1)

UNIT	ITEM DESCRIPTION	QTY	ESTIMATED UNIT COST	ESTIMATED COST
unit	DIGITAL LOGIC LAB Includes: TINA Design Suite Educational Edition. Main Unit (KL 31001) 1. Dual DC Power Supply (1) Voltage range : $+5 \mathrm{~V}, 1.5 \mathrm{~A} ;-5 \mathrm{~V}, 0.3 \mathrm{~A} ; \pm 12 \mathrm{~V}, 0.3 \mathrm{~A}$ (2) With output overload protection 2. Adjustable DC Power Supply (1) Voltage range $:+1.5 \mathrm{~V} \sim+15 \mathrm{~V}$ (2) Maximum current output : 0.5 A (3) With output overload protection 3. Standard Frequency (1) Frequency: $1 \mathrm{MHz}, 60 \mathrm{~Hz}, 1 \mathrm{~Hz}$ (2) Accuracy: $\pm 0.01 \% ~(1 \mathrm{MHz})$ (3) Fan out : 10 TTL load 4. Clock Signal Generator (1) Frequency: $1 \mathrm{~Hz}-1 \mathrm{MHz}$ (6 ranges) a. $1 \mathrm{~Hz} \sim 10 \mathrm{~Hz}$ d. $1 \mathrm{KHz} \sim 10 \mathrm{KHz}$ b. $10 \mathrm{~Hz} \sim 100 \mathrm{~Hz}$ e. $10 \mathrm{KHz} \sim 100 \mathrm{KHz}$ c. $100 \mathrm{~Hz} \sim 1 \mathrm{KHz}$ f. $100 \mathrm{KHz} \sim 1 \mathrm{MHz}$ (2) Fan out : 10 TTL load 5. Data Switch (1) 8-bit DIP switch $\times 2$, 16 -bit TTL level output (2) Toggle switch $\times 4$, each with DEBOUNCE circuit (3) Fan out: 10 TTL load 6. Pulser Switch (1) 2 sets of independent control output (2) Each set with Q, Q output, pulse width $>5 \mathrm{~ms}$ (3) Each set of switch with DEBOUNCE circuit (4) Fanout: 10 TTL load 7. Line Signal Generator (1) Frequency: $50 / 60 \mathrm{~Hz}$ (2) Output voltage : 6Vrms (3) With overload protection 8. Thumbwheel Switch 2-digit, BCD code output and common point input 9. Logic Indicator (1) 16 sets of independent LED indicates high and low logic state 10. Digital Displays (1) 4 sets of independent 7 -segment LED display (2) With BCD, 7-segment decoder / driver and DP input (3) Input with 8-4-2-1 code 11. Logic Probe (1) TTL and CMOS level (2) 5 mm LED displays (3) "Lo" and "Hi" LED display low and high logic state respectively 12. Speaker (1) One $8 \Omega, 0.25 \mathrm{~W}$ speaker with driver circuit 13. Breadboard Modules (AC-90001) (1) 1680 tie-point breadboard on top panel can be easily put into and taken off.	1		
TOTAL	QTY	1	ESTIMATED COST	

LOT-10: ARDUINO TRAINER (ABC: PhP1,000,000.00, QTY: 1)

UNIT	ITEM DESCRIPTION	QTY	ESTIMATED UNIT COST	$\begin{aligned} & \text { ESTIMATED } \\ & \text { COST } \end{aligned}$
unit	ARDUINO TRAINER 1. Power Input: AC $110 / 220 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$, Output: $+5 \mathrm{~V} / 1.5 \mathrm{~A},+3.3 \mathrm{~V} / 0.5 \mathrm{~A}$ 2. Control Board, Arduino UNO R3, Core: ATMEGA328P, Digital IO: 14 (D0-D13), Analog IO: 6(A0-A5), PWM Output: 6 (D3, D5, D6, D9, D1, D11), Support AREF pin, Support Tx/Rx pin, Support 12C interface, Support ISP download Programming interface: USB Type-B. 3. Input Module Digital Input 4×4 Key Pad: Touch Button DIP Switch: 8 pin Analog Input Slide Potentiometer: $20 \mathrm{~K} \Omega \times 2$ Joystick x 1Microphone x 1 Sensor Input CDS Sensor x 1 Temperature \& Humidity Sensor x 1 Accelerometer: 3-axis Ultrasonic x 1 Infrared transmitter \& receiver x 3 . 4. Output Module LED Matrix Display: 8×8 4-Digit 7-Segment Display LED Bar: 10 bit RGB LED x 20 LCD Display: 16×2 (Serial \& Parallel) Raly: 5V, 2 sets DC Motor: 5V, 2 sets Step Motor: 12V, 7.5 deg/tick Servo Motor: 4.8V-6V Electromagnetic Buzzer x 2 5. Communication Module Wi-Fi: ESP8266 x 1 Bluetooth: HCO5 x 1 6. Other Module Solder less Breadboard: $81 \times 62 \mathrm{~mm}, 456$ tie points List of Experiments - Buzzer application: Mono tone output/ Multi tone output / Song playing - LED matrix display: Static \& dynamic - 4-digit 7-segment display: Basic output/ Digital clock - Relay control - High power LED application: PWM control with slide potentiometer and PC - Microphone application: Light detector - Classical RGB LED control: Static/Dynamic display - Serial RGB LED control: Color control - Parallel LCD display control: Static display - Serial LCD display control: Display temperature - Ultrasonic application: Distance measurement - Accelerometer application: Balance detection - DC motor application : Speed and direction control - Step motor application : Unipolar and Bipolar control - Bluetooth application : Connect to mobile phone - Wi-Fi application : Connect to cloud - Infrared application: Line tracer - Servo motor application: Control w/ slide potentiometer and joystick 7. Accessory Experiment manual x1 Software / Source Code CD x 1 AC Power Cord x 1 USB cable (Type-A to Type-B) x 1 Flat cable (5×2 pin) x 1 DuPont wire x 40 .	1		
TOTAL	QTY	1	ESTIMATED COST	

LOT-11: RASPBERRY PI TRAINER (ABC: PhP1,000,000.00, QTY: 1)

UNIT	ITEM DESCRIPTION	QTY	ESTIMATED UNIT COST	ESTIMATED COST
unit	Raspberry Pi Trainer	1		
TOTAL	QTY	1	ESTIMATED COST	

LOT-12: HYDRAULIC PRESS (ABC: PhP1,500,000.00, QTY: 1)

UNIT	ITEM DESCRIPTION	QTY	ESTIMATED UNIT COST	ESTIMATED COST
unit	Hydraulic Press, Hot and Flat Press Total pressure: 1200 kN Working layers: 3 Unit pressure: $3.7 \mathrm{kgf} / \mathrm{cm} 2$ Platen No.\& Size: $4-2500 \times 1300 \times 42 \mathrm{~mm}$ Opening: 120 mm Cylinder No. \& Diameter: $8-\phi 85 \mathrm{~mm}$ Heating way: electric heated Installed power: 52.75 kw Closed speed: $40 \mathrm{~mm} / \mathrm{s}$	1		
TOTAL				

LOT-13: SIEVE SHAKER MACHINE \& I. S. SIEVE SET (ABC: PhP350,000.00, QTY: 3)

UNIT	ITEM DESCRIPTION	QTY	ESTIMATED UNIT COST	ESTIMATED COST
unit	Sieve Shaker machine, Motorized with_Built-in Digital Timer	1		
unit	I.S. sieve set:, I.S. Sieves $100 \mathrm{~mm}, 63 \mathrm{~mm}, 10 \mathrm{~mm}, 4.75$ $\mathrm{~mm}, 2 \mathrm{~mm}, 1 \mathrm{~mm}, 60 \mathrm{u}, 425 \mathrm{u}, 300 \mathrm{u}, 212 \mathrm{u}, 150 \mathrm{u} 75 \mathrm{u}$ sieves	2		
TOTAL	QTY	3	ESTIMATED COST	

LOT-14: ELECTRONIC THEODOLITE (ABC: PhP225,000.00, QTY: 3)

UNIT	ITEM DESCRIPTION	QTY	ESTIMATED UNIT COST	ESTIMATED COST
	Electronic Theodolite: Angle Measurement: Accuracy - 5", minimum Reading 1"/5"/10". Compensating range: +/- 3'; level parameter: Circular level - 8'/2mm. Plate level: 30"/2mm* Telescope: $30 x$ magnification; field of view - 2.6\% min, focus - 1.3m; optical aperture-45mm; length of sleeve-155mm; resolving power-2.5"; stadia ratio -100	3		
TOTAL	QTY	3	ESTIMATED COST	

LOT-15: HANDHELD GPS (ABC: PhP270,000.00, QTY: 6)

UNIT	ITEM DESCRIPTION	QTY	ESTIMATED UNIT COST	ESTIMATED COST
unit	Handheld GPS, Worldwide base map 2.2" 65K color, sunlight readable display 3-axis compass and barometric altimeter wireless capability to share waypoints, routes and geocaches with other similar devices GPS and GLONASS satellites for faster positioning	6		
TOTAL	QTY	6	ESTIMATED COST	

LOT-16: HYDROSTATIC BENCH WITH SLOTTED WEIGHT AND TANK (ABC: PhP3,955,000.00, QTY: 1)

UNIT	ITEM DESCRIPTION	QTY	ESTIMATED UNIT COST	ESTIMATED COST
unit	Hydrostatic Bench with slotted weight and tank, Tank: Storage capacity: 50 liters Densities: Volume pyncmeter: 50 ml	1		
TOTAL	QTY	1	ESTIMATED COST	

LOT-17: PERSONAL COMPUTER WITH ACCESSORIES \& A3 PRINTER WITH PRINT MATERIALS (ABC: PhP483,000.00, QTY: 13)

UNIT	ITEM DESCRIPTION	QTY	ESTIMATED UNIT COST	ESTIMATED COST
unit	Personal Computer with Accessories, Intel Core i7, 4GB RAM, 1TB	10		
unit	A3 Printer with print materials, Model: MFC-J3720	3		
TOTAL	QTY	13	ESTIMATED COST	

LOT-18: STRUCTURAL ENGINEERING LEARNING CENTER WITH MULTIMEDIA (ABC: PhP1,800,000.00, QTY: 1)

UNIT	ITEM DESCRIPTION	QTY	ESTIMATED UNIT COST	ESTIMATED COST
unit	Structural Engineering Learning Center with multimedia	1		
TOTAL	QTY	1	ESTIMATED COST	

LOT-19: LED TV \& DIGITAL CAMERA (ABC: PhP1,078,000.00, QTY: 21)

UNIT	ITEM DESCRIPTION	QTY	ESTIMATED UNIT COST	ESTIMATED COST
unit	Classroom LED TV, 50 inch with_swinging mount, Ultra high definition, USB \& HDMI ready, with 3 meters HDMI cable.	20		
unit	 lens built-in flash, 12 mega pixels minimum, with camera bag sling and tripod.	1		
TOTAL	QTY	$\mathbf{2 1}$	ESTIMATED COST	

[^0]: CAPACITIVE LOAD-didactic equipment. It must consist of a single or three-phase capacitive step-variable load. Housed in a metallic box.

 ## MECHANICAL FEATURES

 The load shall be composed of a rugged metal structure and on the front panel all the controls, the protections, the output terminals and a clear synoptic diagram shall be collected. This item must be provided also with fuses protection.
 ELECTRICAL FEATURES
 The load shall be composed of capacitors, with possibility of star, delta and parallel connection, controlled by three switches. As a function of the switch position, there shall be the following phase values (at 50 Hz):
 Position Capacitance Max power per phase
 12 uF 30 VAR
 23 uF 45 VAR
 35 uF 76 VAR
 48 uF 121 VAR
 510 uF 152 VAR
 613 uF 197 VAR
 718 uF 275 VAR
 Max reactive power in single-phase or three-phase connection 825 VAr. Rated voltage in star connection must be 380 V , in D connection must be 220 V , in single-phase must be 220 V .4 mm . safety terminal included on the front panel for the electrical connection.
 SLIP RING THREE-PHASE ASYNCHRONOUS MOTOR-didactic equipment. Induction motor with both three-phase stator winding and squirrel cage buried in the rotor. Technical features: Power: 1.5 kW - Voltage: 220/380 V D/Y-4 poles Speed: $1500 \mathrm{rpm}, 50 \mathrm{~Hz} ; 1800 \mathrm{rpm}, 60 \mathrm{~Hz}$. It must be possible to couple the electrical machine with other electrical machines through a hub and spider elastic gear ring in polyurethane. It must be supplied with a hooked module in aluminum with PVC label and safety terminals for the electrical connection. A schematic diagram must be shown on the hooked module. Each machine must be mounted on a base and must be provided with:

 - Plate that brings its axis height to the standard measure (112 mm).
 - Plates for fixing to the base of the machine
 - Four screws for fixing of the machine

 Inter Rail Distance of the plates: 160 mm , Coupling Joint: Diameter: 40 mm , length 40 mm . The motor must be supplied with manual in English language. COMMUNICATION MODBUS-didactic equipment module with insulated front panel including: two RS485 inputs and six RS485 outputs. Analog output 10 to 10 V . Analog output 20 to 10 V . One switch for power on/off and a port for power supply connector. The unit must be supplied with a manual in English language SOFTWARE for control and data acquisition that must permit the operations of control and data acquisition.

